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Abstract We consider the Harmonic crystal, a measure on R
Z

d
with Hamiltonian H(x) =∑

i,j Ji,j (x(i) − x(j))2 + h
∑

i (x(i) − d(i))2, where x, d are configurations, x(i), d(i) ∈ R,
i, j ∈ Z

d . The configuration d is given and considered as observations. The ‘couplings’
Ji,j are finite range. We use a version of the harness process to explicitly construct the
unique infinite volume measure at finite temperature and to find the unique ground state
configuration m corresponding to the Hamiltonian.

Keywords Non-homogeneous harmonic crystal · Harness process

1 Introduction

The harnesses were introduced by Hammersley [10] to model the behavior of a crystal and
to introduce a multi-dimension version of a martingale. Let P = (p(i, j), i, j ∈ Z

d) be a ho-
mogeneous symmetric Markov transition matrix with p(i, i) = 0. A harness is a measure on
R

Z
d

with the property that the mean height at i given the heights at all sites different of i is
a P -weighted mean of the heights of the other sites. The serial harness is a Markov process
on R

Z
d

updated at all discrete times at all sites by the rule: substitute the height at site i

by a P -weighted mean of the neighbors plus a centered independent random variable (the
noise). Hsiao [11] proposed a continuous-time version then called harness process in [7].
The heights are updated at Poisson epochs using the same rule as in the serial harness. If the
noise is a centered Gaussian random variable, the reversible measure of the process is the
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harmonic crystal, that is, the Gibbs measure with Hamiltonian

H(x) :=
∑

i,j

Ji,j (x(i) − x(j))2 (1.1)

where x ∈ R
Z

d
, x(i) for i ∈ Z

d represents the height at site i and Ji,j = p(i, j); the temper-
ature 1/β is given by the variance of the noise.

We study a version of the harness process with a external local data term. We can think
that each site i ∈ Z

d has an additional “neighbor” with a fixed height d(i), the data. The
updating of the height at i involves the data d(i) in the averaging. This is a “heat bath” dy-
namics associated to the quadratic (Gaussian) Hamiltonian (2.2): at rate 1, the height at site
i is substituted by a random height distributed with the conditional distribution associated
to the Hamiltonian, given the heights at the other sites. We show ergodicity of the harness
process with data d ∈ X, a set of configurations with a mild restriction on the growth, defined
in (2.5); this extends the work of Hsiao [11, 12] who considered the case d(i) ≡ 0. Ergod-
icity means that there exists a unique invariant measure for the process and that the process
starting from measures concentrating mass on X converges to the invariant measure. The
unique invariant measure is also reversible. We show that any infinite-volume Gibbs mea-
sure on X associated to the quadratic Hamiltonian (2.2) is invariant for the dynamics. This
fact and ergodicity imply that there is only one infinite-volume Gibbs measure associated to
the Hamiltonian. When the process is constructed in a finite subset Λ of Z

d , the invariant
measure is a harmonic crystal with external site-by-site field d. As Λ grows to Z

d the har-
monic crystals in Λ converge to the unique invariant measure for the harness process in Z

d .
If the data is flat (i.e. constant) then we are in the case of massive lattice models in quantum
field theory which are well known (see [5, 8, 9]).

Shortly our method is as following. We slice the space-time configuration space Ξ =
R

Z
d × R+ in pieces determined by the realizations of the Poisson processes governing the

updating times. We show the convergence of the process almost surely for (almost) every
slice. To this end we use Harris graphical construction of the process as a function of a space-
time marked Poisson process of rate 1 on Z

d × R. It is convenient to construct the process
in an arbitrary interval [s, t] to be able to take the limit as s → −∞ which is equivalent to
take the limit as t → ∞ in distribution. At each Poisson epoch, the value of the process at
corresponding site is substituted by an average of the values of the process at the neighboring
sites plus an independent noise. When the construction is explored backwards in time the
value of the process at site i at time t can be expressed in function of the probabilities
of a random walk running backwards in time conditioned on the space-time epochs of the
Poisson process. The walk is killed at a rate related to the weight of the external data and
when it hits the boundary. The value of the process at site i at time t starting at time s is
expressed as a sum of four terms: the contributions given by (1) the noise, (2) the external
data, (3) the boundary condition (in case the process is studied in a finite region) and (4) the
initial condition. The noise contribution is a martingale with uniformly bounded second
moments so it converges as s → −∞. The data contribution converges to a deterministic
function m, a harmonic function for a kernel associated to J and h. The boundary and
initial contributions go to zero as the region grows to Z

d and the initial time s goes to −∞,
respectively.

In Sect. 2 we state the main three theorems. The first one shows the existence of the Har-
ness process in infinite volume. The second one says that the Harness process with external
data is ergodic, that its unique invariant measure coincides with the infinite-volume Gibbs
measure and that there is a unique infinite volume Gibbs measure for this Hamiltonian. The
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third theorem shows that the harmonic function m is the unique function minimizing the
Hamiltonian with the data term (ground state). In Sect. 3 we construct the process and state
intermediate results for the finite and infinite process. In Sects. 4 and 5 we show that the fi-
nite process has as reversible measure the Gibbs measure in finite volume and that the space
and time limits coincide. In Sect. 6 we show that the harmonic function m is the unique
minimizer.

2 Main Results

Let Λ ⊂ Z
d be a finite set and define the Hamiltonian

HΛ(x) =
∑

i,j :{i,j }�⊂Λc

Ji,j (x(i) − x(j))2 + h
∑

i∈Λ

(x(i) − d(i))2 (2.2)

x,d ∈ R
Z

d
, Ji,j is a finite range pair potential, that is Ji,j = 0 if |i − j | ≥ R > 0, d is

a fixed configuration which can be taken as data and h > 0 is a fixed parameter. In fact
HΛ = HΛ(·,d, h) depends on d and h which are fixed and dropped from the notation unless
necessary. Let xΛ be the configuration x restricted to the set Λ and the superposition con-
figuration xΛyΛc be given by x for sites in Λ and by y otherwise. Let |Λ| be the number of
sites in Λ. The family of measures {μΛ(·|yΛc ),Λ ⊂ Z

d , |Λ| < ∞,y ∈ R
Z

d }, defined by

μΛ(dxΛ|yΛc ) = e−HΛ(xΛyΛc )

ZΛ

μ0
Λ(dxΛ), (2.3)

where μ0
Λ is the Lebesgue measure in R

Λ and ZΛ is a normalizing constant, is called the
specification associated to the Hamiltonian H . A measure μ defined on R

Z
d

is said to satisfy
the Dobrushin–Lanford–Ruelle (DLR) equations if its conditioned distributions coincide
with the specifications:

μ(dxΛ|xΛc = yΛc ) = μΛ(dxΛ|yΛc ) (2.4)

for μ-almost all y.
We construct the dynamics in a set of configurations with limited growth. Let

X =
{

x ∈ R
Z

d :
∑

j

|x(j)|α|j |/R < ∞ for all i ∈ Z
d

}

. (2.5)

Recall that R is the radius of the interactions. We introduce the harness process {ηt (i), i∈Z
d}

on X. Let α ∈ [0,1], P = (p(i, j), i, j ∈ Z
d) be a space homogeneous finite-range sym-

metric stochastic matrix (that is, p(i, j) ≥ 0,
∑

j p(i, j) = 1 for all i, p(i, i + j) =
p(0, j),p(0, j) = 0 if |j | ≥ R > 0 and p(i, j) = p(j, i)). Symmetry is not necessary to
define the process but it is natural in this context: we relate later p(i, j) with Ji,j which is
symmetric.

The generator of the process acts on locally finite continuous functions f by

Lf (x) =
∑

k∈Zd

Lkf (x)

=
∑

k∈Zd

∫

G(dx)[f (αPkx + (1 − α)ekd(k) + ekx) − f (x)], (2.6)
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where G(dx) = 1√
2π

e−x2/2dx is the standard Gaussian distribution (with zero mean and

variance 1), called noise and Pkx is the configuration defined by

(Pkx)(j) =
{∑

i∈Zd p(k, i)x(i) if j = k,

x(j) otherwise
(2.7)

and ek(j) = 1{k = j}. In this process at rate 1 the height at site i is updated with a convex
combination of the heights at the neighbors of i and the height d(i), plus an independent
standard Gaussian variable. That is, if site i is updated at time t , the height at i is substituted
by a random variable with the same law as

α(Piηt−)(i) + (1 − α)d(i) + Z (2.8)

where Z is a standard Gaussian independent of ηt−. The real variable (2.8) has law
μ{i}(·|(ηt−){i}c ), the distribution of the {i} coordinate given the values of ηt− in {i}c as de-
fined in (2.3). Our dynamics coincides with the so called “heat bath”.

The following three theorems are the aim of this work. The first one shows the existence
of the process.

Theorem 2.1 Assume d ∈ X. There exists a Markov process (ηt ) on X with generator L:

lim
u→0

1

u
E[f (ηt+u) − f (ηt )|Ft ] = Lf (ηt ), (2.9)

where Ft is the sigma algebra generated by (ηs, s ≤ t), the past of ηs up to time t .

Theorem 2.1 is a consequence of a general existence result of Basis [1, 2]; we provide
here an alternative construction.

Let S(t) be the semigroup associated to L defined by (S(t)f )(η) = E(f (ηt )|η0 = η). It
acts on measures by

∫
f d(νS(t)) = ∫

S(t)f dν. Our second result says that the harmonic
crystal is the invariant measure for the harness process when p(0,0) = 0 and establishes
time and space limits.

Theorem 2.2 Assume d ∈ X and p(0,0) = 0. (i) The following time and space limits exist
and are identical. For any initial measure ν concentrating on X, any boundary conditions
y ∈ X and any increasing sequence Λ ↗ Z

d ,

lim
t→∞νS(t) = lim

Λ↗Zd
μΛ := μ. (2.10)

(ii) μ is reversible for Lk for all k ∈ Z
d , in particular it is reversible for L. (iii) μ is the

unique measure in X satisfying the DLR equations for the specifications (2.3) with Ji,j =
αp(i, j) and h = 1 − α.

The theorem implies that the harness process is ergodic in X: there exists a unique in-
variant measure μ and the process starting in X converges to μ. It also implies that for any
boundary conditions in X the thermodynamic limit is unique (absence of phase transition).

The time convergence was proven by Hsiao [11] and [12] in the case d(k) ≡ 0. The
space convergence is contained in Spitzer [13] and Dobrushin [4], see also Caputo [3]. Our
approach permits to construct simultaneously (coupling) realizations of the measures in all
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finite boxes and the infinite volume measure in such a way that the convergence is almost
sure. Notice however that the uniqueness result is a consequence of the fact that there is only
one infinite-volume invariant measure for the process and that any measure compatible with
the DLR conditions is invariant. The space thermodynamical limit is not used in the proof
of uniqueness.

The condition p(0,0) = 0 is necessary to guarantee that the measure μΛ is invariant for
the generator Lk .

In Statistical Mechanics it is natural to extend the specifications (2.3) to a family of
measures μ

β

Λ defined by

μ
β

Λ(dxΛ|yΛc ) = 1

Z
β

Λ

e−βHΛ(xΛyΛc )μ0
Λ(dxΛ), (2.11)

for β > 0; β is called the inverse temperature. We consider in detail the case β = 1; the
other cases reduce to this one using βHΛ(xΛyΛc ,d, h) = HΛ(xβ

Λyβ

Λc ,dβ, h), where xβ(i) =√
βx(i), etc.
When β = ∞ the randomness vanishes and μ∞

Λ is interpreted as the measure concen-
trating mass on configurations xΛ minimizing HΛ(xΛyΛc ) for finite Λ. When Λ = Z

d , we
denote H(x) = HZd (x), an infinite sum only formally defined. In this case we need to give
a sense to the word “minimizing”. If x̃ differs from x on a finite set of sites Λ, then the
infinite sums defining H(x) and H(x̃) differ only on a finite number of summands. We
define H(x̃) − H(x) as the difference of the corresponding different summands, that is,
HΛ(x̃ΛxΛc ) − HΛ(xΛxΛc ). We say that x minimizes H(·) if H(x̃) − H(x) > 0 for all x̃ lo-
cal modification of x. Measures defined on X compatible with the specifications (2.3) with
β = ∞ are called ground states; see Appendix B of van Enter, Fernández and Sokal [6] for
details. The ground states are concentrated on minimizing configurations.

Let K(i, j) be the probability that the walk with rates αP (a walk killed at rate 1 − α)
is killed at site j when starting at site i. In the next theorem we show that a delta measure
concentrating mass in the configuration given by the K-average of d is the unique ground
state.

Theorem 2.3 Assume p(0,0) = 0 and that d ∈ X and let m be the configuration given by

m(i) :=
∑

j

K(i, j)d(j) for all i ∈ Z
d (2.12)

then m minimizes the Hamiltonian H and the delta measure concentrating mass on m is the
unique ground state for specifications (2.3) in X.

Using the Kolmogorov Backwards equation for the walk with transitions αP killed at
rate 1 − α and boundary conditions d, we see that m satisfies the equation

m(i) =
∑

j∈Zd

αp(i, j)m(j) + (1 − α)d(i). (2.13)

That is, m is a harmonic function for a transition matrix associated to P and α in an extended
graph with “boundary conditions” d. The extended graph has vertices in Z

d ∪ (Zd)∗ where
(Zd)∗ is a copy of Z

d , and edges {(i, j) ∈ Z
d × Z

d : |i − j | = 1} ∪ {(i, i∗) : i ∈ Z
d and i∗ is

the copy of i in (Zd)∗}. The boundary conditions are fixed in (Zd)∗ equal to d; d(i) is the
value of the boundary condition at i∗ and (1 − α) is the weight of the edge (i, i∗). αp(i, j)

is the weight of the edge (i, j).
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3 Harris Graphical Construction

The proof of the above theorems are based on an adaptation of the Harris graphical con-
struction for the harness process proposed by the first two authors in [7]. The core of the
construction is a rate-one space-time Poisson process N on Z

d × R. This can be thought of
as a product of homogeneous one-dimensional Poisson process in R, one for each i ∈ Z

d .
Space-time points in N are denoted (i, τ ) and called epochs. To each (i, τ ) ∈ N we attach
two independent marks: ξ(i, τ ) and ϕ(i, τ ), where ξ(i, τ ) is a Gaussian random variable
with zero mean and variance 1 called noise and ϕ(i, τ ) are variables whose distribution is
described later; these two families are iid and mutually independent and independent of N.
We denote P and E the probability and expectation induced by these Poisson processes with
marks.

The Harness process is realized as a function of the Poisson epochs and the marks ξ (for
the moment we do not use the marks ϕ) as follows. The height at each site i only changes
at times (i, s) ∈ N. Assuming that the configuration at time s− is ηs− and (i, s) ∈ N is
a Poisson epoch, then the configuration at time s at sites k �= i does not change (ηs(k) =
ηs−(k)) and

ηs(i) = α(Piηs−)(i) + (1 − α)d(i) + ξ(i, s) (3.14)

where Pi is defined in (2.7). In other words, at the Poisson epoch (i, s), the height at i is
substituted by a average of the other sites and the external data at i plus a Normal random
variable independent of “everything” else. By a standard percolation argument this construc-
tion can be performed for small time intervals, so that Z

d is partitioned in non interacting
pieces; we sketch it in the proof of (3.4) in Sect. 5 later. We give another construction based
on a “dual” representation using the variables ϕ.

Let the variables ϕ(i, τ ) be independent with law

P(ϕ(i, τ ) = j) = αp(i, j),
(3.15)

P(ϕ(i, τ ) = i∗) = 1 − α,

where i∗ ( �∈ Z
d ) is the copy of i in (Zd)∗. The parameter α ∈ (0,1) is later chosen as in

Theorem 2.2. Define a family of backward random walks indexed by (γ, t), the space-time
starting point, as a deterministic function of the Poisson epochs N and the marks ϕ (here
we do not use the marks ξ ). Fix t ∈ R and γ ∈ Z

d ∪ (Zd)∗. For each s < t we define σ
γ

[s,t] ∈
Z

d ∪ (Zd)∗ as the position of a random walk going backwards in time with initial position
(at time t ) σ

γ

[t,t] = γ and evolving with the following rules. The walk does not move between
Poisson epochs and for s < t , if at time s+ the walk is at site i ∈ Z

d and (i, s) ∈ N, then at
time s the walk jumps to the position ϕ(i, s): for s < t ,

σ
γ

[s,t] =
{

ϕ(i, s) if σ
γ

[s+,t] = i ∈ Z
d and (i, s) ∈ N,

σ
γ

[s+,t] if σ
γ

[s+,t] = i∗ ∈ (Zd)∗ or σ
γ

[s+,t] = i ∈ Z
d and (i, s) /∈ N.

(3.16)

We say that the walk σ
γ

[s,t] is absorbed at j ∈ Z
d at time s if σ

γ

[u,t] = j ∗ for u ≤ s and
σ

γ

[u,t] ∈ Z
d for u ∈ (s, t]. The family ((σ

γ

[u,t], u ≤ t), t ∈ R, γ ∈ Z
d ∪ (Zd)∗) is a function of

N and ϕ, but we drop this dependence in the notation.
A key object in this analysis is the law of the walk σ conditioned on a realization of the

Poisson epochs N. For i ∈ Z
d let

b[u,t](i, j) = P(σ i
[u,t] = j |N) (3.17)
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be the probability the walk σ starting at i at time t to be at j at time u given the Poisson
epochs. The probabilities b[u,t](i, j) are function of the Poisson epochs N and do not depend
on ϕ. Analogously, for (j, τ ) ∈ N define the probability of absorption at time τ at site j

given the Poisson epochs by

a[τ,t](i, j ∗) = P(σ i
[τ,t] = j ∗, σ i

[u,t] ∈ Z
d , for u ∈ (τ, t]|N). (3.18)

Notice that

a[τ,t](i, j ∗) = (1 − α)b[τ,t](i, j). (3.19)

Define the X-valued process η[s,t] in the time interval [s, t] with s ≤ t and initial condition z
at time s by

η[s,s] ≡ z,
(3.20)

η[s,t](i) =
∑

(j,τ )∈N[s,t]
b[τ,t](i, j)ξ(j, τ ) + a[τ,t](i, j ∗)d(j) +

∑

j∈Zd

b[s,t](i, j)z(j),

where N[s, t] = {(j, τ ) ∈ N : τ ∈ [s, t]} and recall ξ(j, τ ) is the noise associated to the
epoch (j, τ ). Under this construction η[s,t](i) is a function of N[s, t] and the corresponding
noises ξ ; it is an average determined by N of the noises ξ , the external field d and the initial
condition z at time s. Our goal is to prove the following

3.1 For each s ∈ R and z ∈ X the process (η[s,t], t ≥ s) defined in (3.20) is well-defined.
Namely, the sums in (3.20) are finite with probability 1 and η[s,t] ∈ X for all s < t . Further-
more the process is Markovian with generator L given in (2.6) and initial condition z at
time s.

3.2 For any configuration z ∈ X and fixed t ∈ R, the limit

lim
s→−∞η[s,t](i) := ηt (i) (3.21)

exists with probability one and does not depend on z. The process (ηt , t ∈ R) is a stationary
Markov process with generator L given in (2.6).

3.3 Call μ the marginal law of ηt (which does not depend on t ), then μ satisfies the DLR
equations (2.4).

3.4 If μ̃ satisfies the DLR equations then μ̃ is reversible for the process (η[s,t], t ≥ s).

3.5 μ, the marginal law of ηt , is the unique infinite volume Gibbs measure on X for the
specifications (2.3).

In other words, the strategy of our proof is to construct a stationary process in infinite
volume whose time marginal is the unique Gibbs measure for the Hamiltonian (2.2). Theo-
rem 2.1 follows from 3.1.
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Finite volume We start considering the Hammersley processes in finite volume Λ ⊂ Z
d

with boundary conditions y ∈ X. The updates occurs at space-time Poisson epochs (i, s) ∈ N

as follows:

ηs(i) = α

(∑

j∈Λ

p(i, j)ηs−(j) +
∑

j∈Λc

p(i, j)y(j)

)

+ (1 − α)d(i) + ξ(i, s). (3.22)

That is, at the space-time Poisson epochs, the process substitutes the value at i by an average
of the values at the other sites and the external data, the values outside Λ are kept fixed and
given by the boundary configuration y.

The construction of the finite harness process in Λ with boundary configuration y goes
along the same lines as in infinite volume, the difference is that the probabilities b and a are
computed for walks that are also absorbed at Λc .

Call Λ∗ the copy of Λ in (Zd)∗. We define a family of backward random walks absorbed
at Λc ∪ Λ∗ indexed by (γ, [s, t],Λ), with space-time starting point (γ, t) with γ ∈ Λ. The
rules now are

σ
γ

[s,t],Λ =
{

ϕ(i, s) if σ
γ

[s+,t],Λ = i ∈ Λ and (i, s) ∈ N,

σ
γ

[s+,t],Λ if σ
γ

[s+,t],Λ ∈ (Zd)∗ ∪ Λc or σ
γ

[s+,t],Λ = i ∈ Z
d and (i, s) /∈ N.

(3.23)
The only difference is that now the walk is absorbed at Λ∗ and at Λc. If the walk starts at Λ,
it will be absorbed either at Λ∗ or at Λc. Calling

N([s, t],Λ) = {(j, τ ) ∈ N : τ ∈ [s, t], j ∈ Λ},
the family (σ

γ

[u,t],Λ, u ∈ [s, t]), t ∈ R, γ ∈ Λ is a function of N([s, t],Λ) and the associated
ϕ, but we drop this dependence in the notation. For i ∈ Λ and u < t define

b[u,t],Λ(i, j) = P(σ i
[u,t],Λ = j |N), (3.24)

the transition probabilities for the walk absorbed at (Zd)∗ and Λc given the Poisson epochs.
The probabilities of absorption at time τ at site γ ∈ Λ∗ ∪ Λc given the Poisson epochs are
defined by

a[τ,t],Λ(i, γ ) = P(σ i
[τ,t],Λ = γ,σ i

[u,t],Λ ∈ Λ, for u ∈ (τ, t]|N). (3.25)

We define the R
Λ-valued process η[s,t],Λ in the time interval [s, t] with s ≤ t , initial

condition z ∈ X and boundary conditions y ∈ X at time s by

η[s,s],Λ ≡ zΛ,

η[s,t],Λ(i) =
∑

(j,τ )∈N([s,t],Λ)

(

b[τ,t],Λ(i, j)ξ(j, τ ) + a[τ,t],Λ(i, j ∗)d(j)

+
∑

k∈Λc

a[τ,t],Λ(i, k)y(k)

)

+
∑

j∈Λ

b[s,t],Λ(i, j)zΛ(j), for i ∈ Λ

(3.26)

where N([s, t],Λ) = {(j, τ ) ∈ N : j ∈ Λ,τ ∈ [s, t]}, the value ξ(j, τ ) is the Gaussian ran-
dom variable associated to the Poisson epoch (j, τ ) ∈ N.

With the above construction η[s,t],Λ(i) is an average determined by N (through the
weights a and b) of the noise ξ , the external field d, the boundary configuration y and
the initial condition z at time s. We drop these dependences in the notation.

We prove the following facts about the finite process:
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3.6 For each s ∈ R the process (η[s,t],Λ, t ≥ s) is Markov with initial condition zΛ, bound-
ary conditions yΛc and generator

LΛf (xΛ) =
∑

k∈Λ

Lkf (xΛyΛc )

=
∑

k∈Λ

∫

G(dx)[f ([αPk(xΛyΛc) + (1 − α)ekd(k) + ekx]Λ) − f (xΛ)], (3.27)

where f is a bounded function depending only on coordinates in Λ.

3.7 The measure μΛ(·|yΛc ) given in 2.3 is reversible for the process (η[s,t],Λ, t ≥ s) for each
fixed s ∈ R.

3.8 For any configuration z ∈ X and fixed t ∈ R, the limit

lim
s→−∞η[s,t],Λ(i) =: ηt,Λ(i) (3.28)

exists with probability one and does not depend on z. The process (ηt,Λ, t ∈ R) is stationary
with time-marginal μΛ(·|yΛc ), which is the unique invariant measure for the process.

3.9 For any configuration y ∈ X and fixed t ∈ R, the limit

lim
Λ↗Zd

ηt,Λ(i) = ηt (i) (3.29)

holds with probability one and does not depend on y.

Theorem 2.2 follows from 3.2 to 3.9.

4 Finite Volume

In this section we prove 3.6, 3.7 and 3.8 for the finite process ηt,Λ.

Generator

Proof of 3.6 From (3.26) it follows that

η[s,u+h],Λ(i) = 1{|N([u,u + h], {i})| = 0}η[s,u],Λ(i) + 1{|N([u,u + h], {i})| = 1}

×
(

α
∑

j∈Λ

p(i, j)η[s,u],Λ(j) + α
∑

j∈Λc

p(i, j)y(j)

+ (1 − α)d(i) + ξ(τ, i)

)

+ other terms (4.30)

where τ ∈ (u,u + h), {|N([u,u + h], {i})| = k} is the event “there are exactly k Poisson
epochs in [u,u + h] × {i}” and the “other terms” are related to the presence of more than
one Poisson epoch in U(i) × [u,u + h] which has probability of order h2, where U(i) is
the cube centered at i with side R. The independence properties of the Poisson process and
(4.30) show that the process is Markovian with generator (3.27). �
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Invariant Measure

Proof of 3.7 Let p(0,0) = 0, 0 < h < 1 and Ji,j = (1 − h)p(i, j) and h = 1 − α. We
prove that μΛ defined by (2.3) on R

Λ is reversible for each one of the generators Lk defined
in (3.27), that is, for f,g : R

Λ → R,

μΛ(gLkf ) = μΛ(f Lkg). (4.31)

For a fixed configuration z and site k let k ∈ Λ, let

z(k) =
∑

i: i �=k

Jk,iz(i) + hd(k). (4.32)

Let z = xΛyΛc . A direct calculation yields

Rk :=
∑

i: i �=k

Jk,i (z(i) − z(k))2 + h(z(k) − d(k))2 (4.33)

= (z(k) − z(k))2 +
∑

i: i �=k

Jk,i (z(i) − z(k))2 + h(z(k) − d(k))2. (4.34)

It follows that the conditional law at coordinate k given the heights at the other coordinates
is a Gaussian with mean z(k):

μ{k}(dz|z{k}c ) = 1√
2π

e−(z−z(k))2
dz (4.35)

so that the updating at site k is done with the conditional distribution given the heights at the
other sites. This implies reversibility; to show it we use the notations

Ek(z) = exp

{

−
∑

i,j : i,j �=k

Ji,j (z(i) − z(j))2 −
∑

i: i �=k

h(z(i) − d(i))2

}

,

Ek(z, z(k)) = exp

{

−
∑

i: i �=k

Jk,i (z(i) − z(k))2 − h(z(k) − d(k))2

}

.

We represent the left-hand side in (4.31) as

μΛ(gLkf ) = S1
k − S2

k ,

where

S1
k := 1

ZΛ

∫ ∏

i∈Λ

dz(i)Ek(z)Ek(z, z(k))

×
∫

R

dxe−x2
g(z)f ((1 − h)Pkz + hd(k) + ekx),

S2
k :=

√
π

ZΛ

∫ ∏

i∈Λ

dz(i)Ek(z)Ek(z, z(k))g(z)f (z).
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Using (4.34), we obtain

S1
k = 1

ZΛ

∫ ∏

i∈Λ

dz(i)Ek(z)Ek(z, z(k)) exp{−(z(k) − z(k))2}

×
∫

R

dxe−x2
g(z)f ((1 − h)Pkz + hd(k) + ekx).

Next we change the variables as follows

v(i) =
{

z(k) + x, if i = k;
v(i) = z(i), otherwise;

and

y = z(k) − z(k).

Observe that v(k) = z(k). Therefore z(i) − z(k) = v(i) − v(k) for any i �= k. Using first
the above substitution and then relation (4.34) again yields

S1
k = 1

ZΛ

∫ ∏

i∈Λ

dv(i)Ek(v)Ek(v,v(k)) exp{−(v(k) − v(k))2}

×
∫

R

dye−y2
g((v(k) + y)vΛ\k)f (v)

= 1

ZΛ

∫ ∏

i∈Λ

dv(i)Ek(v)Ek(v,v(k))

×
∫

R

dye−y2
g((1 − h)Pkv + hd(k) + eky)f (v).

We thus obtain μΛ(f Lkg) = S1
k − S2

k = μΛ(gLkf ). �

Limiting Distributions

Proof of 3.8 We consider separately the four terms in (3.26). Define

A[s,t],Λ(i) :=
∑

(j,τ )∈N([s,t],Λ)

b[τ,t],Λ(i, j)ξ(j, τ ), (4.36)

B[s,t],Λ(i) :=
∑

(j,τ )∈N([s,t],Λ)

a[τ,t],Λ(i, j ∗)d(j), (4.37)

C[s,t],Λ(i) :=
∑

(j,τ )∈N([s,t],Λ)

∑

k∈Λc

a[τ,t],Λ(i, k)y(k), (4.38)

D[s,t],Λ(i) :=
∑

j∈Zd

b[s,t],Λ(i, j)z(j). (4.39)

Since the variables ξ are independent of the variables b, (A[t−u,t],Λ(i), u ≥ 0) is a martingale
for the sigma field Fu generated by N([t −u, t],Λ) and the associated Gaussian variables ξ .
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The variance at time u is given by

E(A[t−u,t],Λ(i))2 = E
∑

(j,τ )∈N([t−u,t],Λ)

(b[τ,t],Λ(i, j))2 (4.40)

by conditioning on the Poisson epochs and deleting the cross terms by independence of the
different ξ . The last expression is bounded by

≤ E
∑

(j,τ )∈N([t−u,t],Λ)

b[τ,t],Λ(i, j) =
∑

j

∫ u

0
e−(1−α)rQr

Λ(i, j)dr ≤ 1

1 − α
(4.41)

uniformly in Λ, where Qr
Λ(i, j) is the probability for a continuous time random walk with

rates p absorbed at Λc starting at i to be at j by time r . The factor e−(1−α)r corresponds
to the probability that the walk is not killed in the time interval [t, t − r]. The Martingale
convergence theorem implies that

lim
u→∞A[t−u,t],Λ(i) = At,Λ(i) a.s. (4.42)

The process (At,Λ, t ∈ R) is Markov, stationary with generator

∑

k

LA
k f (xΛyΛc ) =

∑

k

∫

G(dx)[f (αPk(xΛyΛc + ekx)) − f (xΛyΛc )], (4.43)

and E(At,Λ(i))2 ≤ (1 − α)−1.
We show now that the limit in (4.37) is given by

lim
u→∞B[t−u,t],Λ(i) =

∑

j∈Λ

KΛ(i, j)d(j) =: mΛ(i) (4.44)

where KΛ(i, j) is the probability the random walk to be killed at site j , if j ∈ Λ, or to be
absorbed, if j ∈ Λc . As in (2.13), mΛ satisfies

mΛ(i) =
∑

k∈Λ

αp(i, k)mΛ(k) + (1 − α)d(i). (4.45)

For v > u, the following “Markov property” holds

B[t−v,t],Λ(i) := B[t−u,t],Λ(i) +
∑

k∈Λ

b[t−u,t],Λ(i, k)B[t−v,t−u],Λ(k). (4.46)

Applying (4.45) to each Poisson epoch (j, τ ) we have

mΛ(i) = B[t−u,t],Λ(i) +
∑

k∈Λ

b[t−u,t],Λ(i, k)mΛ(k) (4.47)

which implies that mΛ is invariant for this dynamics. For fixed s the process (B[s,t],Λ, t ≥ s)

on R
Λ is Markov with generator

∑

k∈Λ

LB
k f (xΛ) =

∑

k∈Λ

[f ([αPk(xΛoΛc ) + (1 − α)ekd(k)]Λ) − f (xΛ)], (4.48)
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where the o is the “all zero” configuration: o(i) ≡ 0. Finally, using (4.47),

|B[t−u,t],Λ(i) − mΛ(i)| ≤
∑

k

b[t−u,t],Λ(i, k)|mΛ(k)|. (4.49)

By (4.41) the right hand side converges to zero as u → ∞ uniformly in Λ, proving (4.44).
A similar argument shows that

lim
u→∞C[t−u,t],Λ(i) =

∑

j∈Λc

KΛ(i, j)y(j) =: rΛ(i). (4.50)

Finally, by (4.41),

lim
u→∞D[t−u,t],Λ(i) = 0. (4.51)

The limits (4.42), (4.44), (4.50) and (4.51) show (3.28). The resulting limit is

ηt,Λ = At,Λ + mΛ + rΛ. (4.52)

By construction the law of this limit does not depend on t . One proves that the process
(ηt,Λ, t ∈ R) is Markov like in 3.6. Since the limit (4.52) does not depend on the initial
configuration z, this shows that the process (ηt,Λ) has a unique invariant measure. Since
by 3.8 μΛ(·|yΛc ) is invariant for this process, for each t ∈ R the marginal law of ηt,Λ is
μΛ(·|yΛc ). �

5 Infinite Volume and Thermodynamic Limit

Existence of the Process

Proof of 3.1 The fact that the sums in (3.20) are finite follows immediately from the finite
range condition on p. The proof that the dynamics is the harness process follows then from
an argument similar to the one in 3.6. �

Limiting Stationary Processes Here we prove 3.2 and 3.9. To prove 3.2 we consider sepa-
rately the three terms in (3.20). Define

A[s,t](i) :=
∑

(j,τ )∈N([s,t])
b[τ,t](i, j)ξ(j, τ ), (5.53)

B[s,t](i) :=
∑

(j,τ )∈N([s,t])
a[τ,t](i, j ∗)d(j), (5.54)

D[s,t](i) :=
∑

j∈Zd

b[s,t](i, j)z(j). (5.55)

Lemma 5.1 Under the hypothesis of Theorem 2.2,

lim
u→∞A[t−u,t](i) = At(i) (5.56)
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and (At , t ∈ R) is a stationary Markov process with generator

∑

k

LA
k f (x) =

∑

k

∫

G(dx)[f (αPkx + ekx) − f (x)], (5.57)

with E(At (i))
2 ≤ (1 − α)−1. Furthermore,

lim
Λ↗Zd

At,Λ(i) = At(i). (5.58)

Proof As in the proof of (4.42), (A[t−u,t](i), u ≥ 0) is a martingale with uniformly bounded
second moments. Hence the limit (5.56) exists. Since b[τ,t],Λ(i, j) ↗ b[τ,t](i, j),

|At(i) − At,Λ(i)| ≤
∑

(j,τ )∈N[−∞,t]
(b[τ,t](i, j) − b[τ,t],Λ(i, j))|ξ(j,τ )|. (5.59)

The sum is finite because the variance of At(i) is bounded and it converges to zero by
monotone convergence.

The process (At , t ∈ R) is stationary by construction. It is Markov with generator (5.57)
as a consequence of (5.58) and 3.6. �

Lemma 5.2 If d ∈ X then |m(i)| < ∞ for all i ∈ Z
d and

lim
u→∞B[t−u,t](i) = m(i) (5.60)

and

lim
Λ↗Zd

mΛ(i) = m(i). (5.61)

Proof Remark that K(i, j) ≤ α[ |i−j |
R

] because at least [ |i−j |
R

]+1 jumps are needed to achieve
the point j from i and during the time σ i

[−∞,t] is not absorbed.

|m(i)| ≤
∑

j

K(i, j)|d(j)| ≤
∑

j

α

[ |i−j |
R

]

|d(j)| < ∞ (5.62)

by the definition of X. The proof of (5.60) works as the proof of (4.44).
On the other hand KΛ(i, j) ↗ K(i, j), hence

|m(i) − mΛ(i)| ≤
∑

j

(K(i, j) − KΛ(i, j))|d(j)| → 0 (5.63)

by monotonic convergence. �

Lemma 5.3 If y ∈ X then for rΛ defined in (4.50),

lim
Λ↗Zd

rΛ(i) = 0. (5.64)
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Proof As in the proof of the previous lemma,

|rΛ(i)| ≤
∑

j∈Λc

α

[ |i−j |
R

]

|y(j)| (5.65)

which converges to zero as Λ ↗ Z
d because the sum is finite by definition of X. �

Proof of 3.2 Calling ηt =: At + m, the convergence follows from (5.56), (5.60) and (4.51)
(which holds uniformly in Λ). �

Proof of 3.9 Since

ηt,Λ = At,Λ + mΛ + rΛ and ηt = At + m, (5.66)

the convergence follows from (5.58), (5.61) and (5.64). �

Limiting Process Satisfies DLR Conditions

Proof of 3.3 Here we use the thermodynamic limit. The measures μΛ(·|yΛc ) are compatible
with the DLR conditions for subsets of Λ. By (3.29) the measure μ is the limit as Λ increases
to Z

d of μΛ(·|yΛc ), independently of y ∈ X. Hence, also μ is compatible with the DLR
conditions. �

DLR Measures Are Invariant

Proof of 3.4 This proof does not use the thermodynamic limit. We first prove that μ̃ is
invariant. Let η be a configuration sampled with μ̃. Let η(k) be defined in (4.32). Let Z

be a standard Gaussian variable independent of η. Since μ̃ satisfies the DLR equations,
a computation like in (4.34) shows that the variable

η(k) + Z has law μ̃(x(k) ∈ ·|x{k}c = η{k}c )

and the configuration

θ(k, η,Z) = η − δη(k) + δη(k)+Z

obtained by substituting the value at k by ηk +Z has law μ̃. The Harness dynamics does the
same substitution with the Gaussian noises ξ at the updating epochs; see (3.14). This means
that after each Poisson epoch, the distribution of the updated configuration is the same as
the one just before the updating. But since there are infinitely many sites, there is no “first
Poisson epoch” to apply the rule and show 3.4 directly. To overcome the difficulty consider
a time t small enough such that Z

d is partitioned in finite sets Λ�, � = 1,2, . . . (depending
on the Poisson epochs in the interval [0, t]) in such a way that if there is an epoch at time
s ∈ [0, t] at site i ∈ Λ�, then {j ∈ Z

d : ||i − j || ≤ R} ⊂ Λ�, where we recall R is such that
p(0, j) = 0 if ||j || ≥ R. A standard percolation argument shows that this is possible.

Enumerate the epochs as follows. Start ordering chronologically the epochs in Λ1; con-
tinue with the epochs in Λ2 and so on. Under this ordering, if n(i, s) is the label of epoch
(i, s) then n(i, s) < n(i ′, s ′) if s < s ′ or if i ∈ Λ�, i ′ = Λ�′ and � < �′. Call (in, sn) the nth
Poisson epoch in this labeling and ξn = ξ(in, sn) the associated Gaussian variable. Choose η

with law μ̃ and define inductively η0 = η and for n ≥ 1,

ηn = θ(in, ηn−1, ξn).
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By the previous considerations ηn has law μ̃ for all n. By the definition of Λ�, the up-
dating of sites in Λ� in the time interval [0, t] depends on the initial configuration η only
through the values at sites in Λ�. On the other hand, for any cylinder function with sup-
port on a finite set Λ, there exists an n(Λ,N) < ∞ such that Λ ⊂ {i1, . . . , in(Λ,N)} and∫

μ̃(dη)E(f (ηn(Λ,N))|N) = μ̃f for almost all N. Hence

μ̃S(t)f =
∫

μ̃(dη)E(E(f (ηn(Λ,N))|N)) = E

(∫

μ̃(dη)E(f (ηn(Λ,N))|N)

)

= μ̃f.

This shows invariance of μ̃.
A similar argument shows reversibility. Going backwards in time, the law of ηn−1(in) −

η̄n(in) is a standard Gaussian variable independent of ηn. The construction can be done using
the same Poisson epochs and partition (Λ�). �

6 Zero Temperature

Proof of Theorem 2.3 We need to show that the configuration m defined in (2.12) is com-
patible with the specifications (2.3) at zero temperature. Let Λ ⊂ Z

d be a finite volume. We
want to show that mΛ given by (2.12) is the xΛ which minimizes

H(xΛmΛc ) = α
∑

i,j∈Λ

p(i, j)(x(i) − x(j))2 + α
∑

i∈Λ
k∈Λc

p(i, k)(x(i) − m(k))2

+ (1 − α)
∑

i∈Λ

(x(i) − d(i))2. (6.67)

The Hamiltonian (6.67) can be rewritten as

H(xΛmΛc ) = α
∑

i∈Λ

∑

k∈Zd

p(i, k)(x(i) − m(k))2 + (1 − α)
∑

i∈Λ

(x(i) − d(i))2

+ 2α
∑

i,j∈Λ

p(i, j)[−(x(i) − m(j))(x(j) − m(i))

+ (x(i) − m(j))(m(j) − m(i)) − (x(j) − m(i))(m(j) − m(i))

+ (m(j) − m(i))2]. (6.68)

Let

ri = m(i)2 −
[

α
∑

k∈Zd

p(i, k)m(k)2 + (1 − α)d(i)2

]

then

H(xΛmΛc ) =
∑

i∈Λ

(x(i) − m(i))2 −
∑

i∈Λ

ri

+ 2α
∑

i,j∈Λ

p(i, j)[−(x(i) − m(j))(x(j) − m(i))
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+ (x(i) − m(j))(m(j) − m(i)) − (x(j) − m(i))(m(j)

− m(i)) + (m(j) − m(i))2].
To find the configuration xΛ minimizing (6.67) we take the derivatives for i ∈ Λ:

∂H

∂x(i)
= 2(x(i) − m(i))

+ α
∑

k∈Λ

p(i, k)[−2(x(k) − m(i)) + 2(m(k) − m(i))].

Then we obtain the following system of the equations

x(i) − α
∑

k∈Λ

p(i, k)x(k) = m(i) − α
∑

k∈Λ

p(i, k)m(k). (6.69)

It is clear that x(i) = m(i) is a solution of (6.69). Since HΛ is convex, m is the minimum.
Since HΛ is a second order polynomial the minimum is unique. This shows that m belongs
to the support of a ground state measure.

Uniqueness Let m̃ ∈ X be a minimizer of H . Then m̃(i) = α
∑

j p(i, j)m̃(j) +
(1 − α)d(j) minimizes H(x{i}m̃{i}c ) for each i ∈ Z

d . So m̃ is invariant for the dynamics

∑

k∈Zd

LB
k f (x) =

∑

k∈Zd

[f (αPk(x) + (1 − α)ekd(k)) − f (x)], (6.70)

because this dynamics chooses a site i at random times and substitutes the height at i with
the value minimizing H(x{i}m̃{i}c ). The graphical construction of this process with initial
measure m̃ and the invariance of m̃ gives

m̃(i) = B[t−u,t](i) +
∑

k∈Zd

b[t−u,t](i, k)m̃(k). (6.71)

Subtracting this equation from (4.47) with Λ = Z
d we get

|m(i) − m̃(i)| ≤
∑

k∈Zd

b[t−u,t](i, k)|m(k) − m̃(k)|. (6.72)

This is summable because both m ad m̃ belong to X and since limu→∞ b[t−u,t](i, k) = 0,
then m = m̃. �
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